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We present formalisms for the description of two-particle systems of classical 
and of quantal Einstein relativistic particles. For each case the presentation 
follows a standard scheme. We define the phase-space, the observables, and the 
action of the kinematical symmetry group in the center-of-mass representation. 
We then discuss some of the elementary features of the description of two-par- 
ticle systems in order to be able to interpret the objects considered. In particular, 
we show that the description of the free particles conforms to standard relativis- 
tic kinematics. As an application we discuss the system consisting of two charged 
particles interacting via the Coulomb field. 

1. I N T R O D U C T I O N  

The theory for the description of conservative systems of two Einstein 
relativistic particles presented in this paper  is a compromise between the 
space-time approach (Pearle, 1968; Aghassi, Roman,  and Santilli, 1970; 
Horwitz and Piton, 1973; Aaberge, 1975; Reuse, 1979) and the momentum-  
space approach (Wigner, 1939; Newton and Wigner, 1949; Bakamjian and 
Thomas, 1953; Fong and Sucher, 1964; Coester, 1965). The choice of phase 
space that we have made has been suggested by the space-time approach. 
However, this a priori choice, which is necessary in order to describe 
particles interacting via fields localized in space-time, gives a phase space 
which is too big to allow for an interpretation as state space, i.e., for each of 
its points to represent a state of the system. To accommodate  for this defect, 
we apply constraints serving as constraints to the "mass  shell." In this way 
we incorporate the Einstein relativistic kinematics, and reproduce important  
features of the description of two-particle systems in the momentum space 
approach. 
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724 Aaberge 

We apply the notational conventions i , j , k ~ ( 1 , 2 , 3 ) ,  a, fl,'r, 6, t~, 
v . . . .  (0, 1,2, 3), (qi) = (ql, q2, q3), (q~,) = (qO, ql, q2, q3), (qi)Z = q;qi = q~2 + 
q~2 + q32 and q~'q~, = q2 _(qi)2. Moreover, to distinguish between functions 
(operators) and values of functions (operators) we use a caret. 

2. THE SYSTEM OF TWO CLASSICAL PARTICLES 

The system of two classical Einstein relativistic particles is defined in a 
center-of-mass representation "diagonalizing" the space-time coordinates. 
We then discuss briefly the canonical coordinates "diagonakizing" the 
mass-defect observable of the center of mass. In this representation the 
conjugate observable to the momentum is the classical Newton-Wigner 
position observable. 

The Hamilton dynamics is introduced via the Cartan one-form and 
constraints are defined to which the dynamics is subjected. 

We describe the motion of the center of mass and show that the 
scattering system is asymptotically equivalent to the system of two free 
particles. The kinematical basis for the construction of the present theory 
has been discussed in Aaberge (1982). 

2.1. Definition of the Two-Particle System 

Definition 2.1. A system of two classical Einstein relativistic particles of 
kinematical masses m I and m 2 (m I >~ m 2 > 0) is associated with (i) the 
space: 

= F •  = {(P~,Q' ,  p ' , q ' , t )  ~ T*(N XR3)XR} 

N =  {(P~,  pO) ~ R s l ( P O  + Mc) 2_ (P i )2  > 0, pO > _ Mc 

m2 n 0 
> - + M c ) 2 - ( p ' ) 2 ]  ' /2, 

and the phase space (F, r with 

M =  m I + m2} 

o~ = dP~, A d Q  # + dp~, A d q  ~' 



Description of Two-Particle Systems 725 

(i.i) the kinematical symmetry group S0(3,  1) )< R 4 being represented 
by the action s 

P" ~ A(0 ' ,  u~)~P ~ + M : ( u ' )  

Q~' ~ a (  o', ui)~Q" + tv~'( ui)+ a ~' 

-1 i , O i i ~A O i )vOpA(Ow(P ,A(Oi,  ui)))~q" + p e a  (Ow(P , A (  ,u )))O ( 'ui ~' i ~, 

i ix p ' ~ A ( O w ( P  ,A(Oi,  ui)))•p" 

q ~ A ( O ' w ( P " , A ( O i ,  ui)))~q" 

t ~ t  

where A denote the usual Lorentz transformations, and 0~ are the functions 
defined by the identity 1 

a(oi (e~ ' .A(Oi .u ' ) ) )~  = L - ' ( a ( O ' . u i ) ~ e "  + Uv~'(ui))]A(Oi. u i )~L(P  , 

with 

L ( P " ) ~ = A  0 i , P o + M c  

(iii) the observables P", (2", AM, and X" describing the center of mass, 
the observables p~ and q~ of the internal system, and the time t, being 
represented by the functions 

/5.(e~., Q~,, p~,, q~,, t) = P" 

O " ( e  ~', Q", p~', q~', t) = Q~' 

p~'( P", O~, p", q", t ) = p" 

O~'( e ~', Q~', p~', q~', t) = q~" 

i( e . ,  a. ,  p.. q., t) = t 

A)(.Io r e ~', Q~', p~', q~', t) = 1 (( pO + Mc)2 _ (p/ )2)  '/2 _ M 
c 

2 .  o ~ ( p . , Q . , p . , q ,  t ) =  [(e~ 
pO + Mc 

pO + Mc QO 

INotice that A(0~(... )) is a rotation. 
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It might be worthwhile to notice that the observable X i of the above 
definition is the classical realization of the Newton-Wigner position ob- 
servable. 

Theorem. Let (Y~) = (AM, pi); then the map 

~:  r- r, (P~,Q~,p~,q~)~ (Y~, X~,p~,q ~) 

is of the form ~ = T*q~, where 

r 2 1 5 2 1 5  3, (P~',p~')~(Y~',p~') (1) 

is a diffeomorphism. 

Proof The proof follows by verification of the definition. �9 

Corollary. The map ~: F ---, F is a symplectomorphism of (F, w). 

Proof The proof follows from the observation that w = -d (Q~dP~  + 
q~ dp~). �9 

In the coordinates (YV, X ~', p~', q~), F is characterized by 

F = ((Y~', X ~', pf', q~) ~ Rl6[ AM > - i 

& ( m , / M ) ( A M +  M)c> pO > _ (mz /M) (A  M+ M)c) 

The action of S0(3, l) X R 4 is given by 
$ 

AM~-~ AM 

pi~_~ pi + _ _  U i .y2 ( u j p j )  ui +__[(p i ) z+(AM+ M)2c2],/2=p,i 
y + l  c c 

" ~ r I ~ ( A m ,  u~)t X ~ ' ~ x ( A M , P i , A ( O  i , u ) ) " X  + P', 

+ p.A-'(O~(.))~Y.(AM, pi, A(Oi, u'))~OrA(Oi('))~q ~ 

( A M + M ) c  ai 
+ [(pi)2+(AM + M)2cZ] l/2a~ 

) [(p,)2+(AM+M)2c2] ''a~ 
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for 

X(AM, p i ,  A ( O i  i " = ,o )). A(o',o') 

i i o X(AM, pi, A(O,u ) )o= l  

~.(AM, P%A(Oi, ui))o = (AM+ M)cu' 
[ ( U ) + ( h M  + M)c)] I/2 

Z( bM, pi, A(Oi, ui) )io = O 

Y,( AM, Pi, A(Oi, ui)))=Sj + - 
1 uilg j ptiuj 

y + l  c2 c[(pi)2+(AM+M)2c2]I/2 

( A M + M ) ( ' y - 1 ) c  ui 
II~'(AM'pi'u')= [ ( p i ) 2 + ( h M  +M)zc2], /z ' 

? " ( v - : l ) ~  , 

- M)'c,j'") 
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Notice that X ~ transforms independently of X ~ and qO. 
Finally, the observables P~, Q~, AM, and X ~ are realized by the 

functions 

P~or t )=(  [(P')2+ (AM + M)2c2] V2 - Mc, P i) 

~ ,  o 0-l(y~,,  X~, p~,q,,t  ) = 
[ (e i )  2 +( AM + M)2c2] 1/2 

( A M + M ) c  
X 0 ' X i 

p i  X ~  I 
+ ( A M + M ) c  } 

Ah~/(Y~', X ~', p~', q~', t) = AM 

)(~(Y", X ~, pU, q~, t ) =  X ~ 
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2.2. The Dynamics. Let wx: T , ~  ---, R be the 1-form 

o~oc = P. dQ" + p. dq" - Mc dQ ~ - ~ ( P~, O r, p~, q. ,  t) dt 

and let ~x be a vector field on ~2 such that 

it~ d~o% = 0 

then, ~% is unique and given by (Cartan, 1971) 

~,'j(-= Op~(')OQ.-- aQ~( ' )Op '~- Gqp ~( ' )Oq.--  Oq~',(')fgp q- 0 t 

The function ~ ,  the Hamiltonian of the system, is assumed to contain the 
information about the dynamics of the system in the sense that a curve c: 
[t 1, t2] --, f~ describes a possible evolution only if it satisfies the equations of 
motion 

~ = ~ o c  

Further restrictions are imposed on the dynamics by the assumption 
that the Hamiltonian is of the form 

~ ( P ~ , Q ~ , p ~ , q ~ , t ) =  P"P~ + f~(p~,q ' )  
2 M  

(2) 

where for reasons of Lorentz covariance, the internal Hamiltonian /~ is 
assumed to be rotation invariant; and moreover, that the possible initial 
conditions are subjected to the restrictions imposed by the constraints 

a = a M c + - -  
A/~/2 1 1 _ _  

= e ~  - ' ~  = 0 
2Mc c c 

1( m),/2 r, 
/ ~ = p O _  1 - 4 ~  

(1 + 2h / M c 2 )  1/2 
=0 (3) 

Remark. The functions ~ and/~ are constants of motion ~x(&) = 0 and 
~x(/3) = O. The constraints ~ = 0 and /~ = 0 are thus satisfied during an 
evolution if they are satisfied on the initial conditions. 

The internal energy spectrum is defined to be the range of the internal 
Hamiltonian/~ restricted to the submanifold 

f~(#=0) = ((P~' ,Q~' ,p~,q~, t )  ~ f~l/~ = 0 )  
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Similarly, the total energy spectrum is defined to be the range of ~2 
restricted to 

a r176176 = ((P~', Q~', p~', q~', t) ~ als = o & B = o) 

2.3. Characteristic Features of the Description. According to the defini- 
tion of the last paragraph, a model of a conservative system of two mutually 
interacting particles and no external field is completely defined by giving an 
internal Hamiltonian /~(p~ qi). The center of mass of the system in an 
internal state of energy e appears as a free Einstein relativistic particle of 
kinematical mass M and internal energy e, being associated with the state 
space 

~ ( f l = O , h = e )  = ( ( p,, Q~, p,, q,, t) ~ f~#=~ = e) 

In the coordinates (Y", X~), the Hamihonian (2) takes the form 

~ o  g p - ' ( . ) =  c[ (Vi)  2+(AM+ M)2c2] '/2 

- (  AM + M)c 2 - -  
AM 2 
2M 

c2 + f~(p',q i) 

The equations of motions for the observables AM, pi and X ~ are thus 

a M = 0  

P ~ = 0  

~(o_ AM+ Mc2_ (AM+ M)c 3 
M ((pi)2+(AM+M)2c2)'/2 

P% Xi= 
[(pi)2+(AM+M)2cX] 1/2 

Parametrizing the solutions by the velocity u', we get 

bM=M[(l+2e/Mc) ' /z-1]  

Pi=(AM+M)Tu',  y=[1-(u')2/c2] -'/2 

x o =  ( y - 1  + A M )  1 + u Q ~ 
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x i =  uit + Qi o - uiQO 

p~ = (AM + M ) ( ( 7  - 1)c, yu i) + (AMc,O i) 

Q ~ -  ([(1 + A M / M ) ~ -  l ie , (1  + A M / M ) T u J ) t  + O~ 

p~p~ 
E =  2 M  + e = ( A M + M ) y c 2 - M c 2  

where we have applied the constraint a = 0 to define AM as a function of 
the internal energy e. 

When the internal space associated with the chosen internal energy e is 
trivial, i.e., when 

a(/~-0, h-e)_~ (( elL, Q,,  t) ~ R 91(PO + Me)2 _ (p i )2  > O, pO > _ Me)  

then X ~ transforms by 

X~--~ E( �9 ) . X  ~ " + 1-I~(.)t (4) 

under a homogeneous Lorentz transformation. 
To interpret the notion of position expressed by the observable X ~, let 

X 'i= X(j denote the position of a particle at rest. Then by (4), 

T (X~ u i= uit + X~ 
x ' i  ~ g i  = uit + s~  "t + 1 C 2 

is the position in a frame moving with velocity K'. An  interpretation of X ~ 
appears from the observation that 

' j2 

go_l. ~ So i l  

i.e., for a system without internal structure, X i transforms by a 
Lorentz-Fitzgerald contraction under the Lorentz transformations (O r, u"). 

Another important feature of this theory concerns the description of 
the asymptotic states of a scattering system. Let/~ be the internal Hamilto- 
nian of a system of two particles possessing scattering, i.e., such that the 
study of the asymptotic system is equivalent to the study of the system of 
two free particles, for which the Hamiltonian is 

P~'P~, p~'p~, 
+ 
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Let f~(~C) be defined by 

m,[(p0 + M~)~-(~')~]-2m~Mh 
a(%)= al 2M[(eO + Mc)2_(e,)2],/= 

m2[(P ~ + Mc)2-(P' )2]-2m,Mh 
:M[(i,~ + M~) ~ _(p,)~]','~ 

then 

> p O >  

73! 

a(~c) =r*(M x M)xR 

In fact. consider the individual particle observables p~', q~, p~', and q~ 
defined by 

p~o q(P~,Q",p~,q", t )  = m, p . _  L(e~)~p. 
M -  

q~o~(p. ,Q~ p . ,q~ , t )=O~+p.L- t (p . )~OpL(p~)~q ,  m 2 - ' ~ ,  "~' , -- ---~Lkl.. ) , q  

p~ o q (  P~, Q", p", q", t) = m: - .  --fie" + L(e~)Cp" 

ml q~oq(P" ,Q" ,pLqLt )=Q"+p~L (P )aOeL(r )~q 

then, the map 

~.: T*(M x M) -~ T*(M x M) 

( P~', Q~', p~',q~'),---) (p",q~', p",q") (5) 
for 

M= (( p~,) ~R41( pO + mc) 2_(Pi)2 > 0 & p~ > _ mc) 

is a symplectomorphism; in fact, 

q~ = T** whereq~:M--*M,(P~,p")~(p~.p~) 

thus 

Q. dP~' + q~, dP ~" = qt. dp~ + q2. dp~ 
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The action (Definition 2.1) of SO(3, 1) X R 4 can be transported to the 
new coordinates. It reads 

p" ~ A(O', u')~pP + m .v"(u ') 

q~. ~ A(O i, ui)~qY + t~)~(u i) 

Moreover, the observables P~, Q~, p~, and q~ are represented by the 
functions 

P" o ~ - ~ ( p ~ ,  q", pU, q~, t)  -~ p~ + p~ 

1 
Q~o * - ' (  p~, q~, p~', q", t) --- ---~(m,q~ + mzq~) 

1 
+ -~(rntp2,, - m 2 p l ~ ) L ( p  ~ + p~)~ 

X OpL- l (p~  + p~)~(q~-- q[) 

p. t t  j, 
p~ 'ox t ' - I (p~ ,q" ,p~ ,q~ , t )=  L-~(p~  + p 2 ) ~ ( m l P 2 - m 2 p  ~) 

q " o q ' - ' ( p ~ , q ~ , p " , q " , t )  = L - l ( p f +  P2 ~). u(q2 " -  q[) 

Thus, we have shown that q~' is the relative space-time position in the 
center-of-mass frame of reference. We have moreover, shown that modulo 
the restriction to ~ ( ~ ) ,  the two-particle system without interaction appears 
as a system of two free particles. In fact, the constraints a = 0 and fl = 0 
imply the constraints t~l = 0 and a 2 = 0 for 

Pi~Pir, 
a i = p~ i 2m i 

Because of the constraints, the restriction to ~(0C) is however, inessen- 
tial. The way of showing this is to introduce constraints a = 0 and fl = 0 on 
f~ and thus to construct the Bakamjian-Thomas center-of-mass represen- 
tation of the system of two free classical "Wigner particles" (Bakamjian and 
Thomas, 1953). 

2.4. The Bakamjian-Thomas Theory. Let 

e .e .  p %  i ( . )  . . . . .  
~}C ( . )  = - ~ - ~  -~ 2m 2m 
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the diffeomorphism 

0: N •  ~ N •  3 

( e~, P~) ~" (a, Pi, 8, P') = (Y~, Y~) 

where a and fl are defined by (3), then induces a symplectomorphism 

0 = T'O: T*(N •  3) --* T*(N •  3) 

( p~, Q~,, p~, q.  ) ~ ( ~.~, ~(u, y~,, x ~ ) 

It turns out that 3(" is given by 

M C 2  QO 
f ( ~  pO +~--~c 

p i  

f( '(  P", Q~, p", q~, t) = X'(  P ~, O r, p~, q~, t) = Qi pO + Mc QO 

while x" is given as a function of P", p~, and q" for which we will not give 
the explicit expressions. 

The action (Definition 2.1) of S0(3, 1) X ~4 can be transported to these 
new coordinates. The result is s 

a ~ i )  O/ 

ei~__~ p i  + _ _  _ _  
(u J) ui[ ] M # I/2 

T + I  c 2 ui+Y--c ( p J ) 2 + M 2 c 2 + 2 M a c  m p P~" 

X 0 ~ X 0 

for a, pi, fl, pi, x o, and x i. We will not give explicitly the action on X~. We 
only notice that X i transforms independently of ~o  and x ~ 

Denote by 6 - 1 ( 0 ) n i l -  t(0) the intersection of the inverse images of 0 
by 6 and fl in ~: 

~- ' (O)n f l  - ' (0)  = ((P',  X~, p', x, t) ~ a '~) 
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Moreover, let f~0 = ~ -  l(O)A/~ - 1 ( 0 ) / -  be the quotient obtained by identi- 
fying two points in &-I(O)N/~-t(O) if they differ only in the value of the 
coordinates ~o  and x ~ Then, 

n0= ( ( r ,  x', a'3) = r0 •  

and ~20 carries a well-defined action of SO(3, 1) X R4; in fact, the two 
$ 

operations by means of which ~20 is defined are Lorentz invariant. It can 
also be shown that F o = R ~2 possesses a Lorentz-invariant symplectic struc- 
ture 

d P  i A d X  i "4- dp i  A d x  i 

inherited from (F, ~o). 
The resulting theory, the Bakamjian-Thomas theory, describes com- 

pletely the system of two free particles. The Hamiltonian takes the form 

with 

A/ f /o ( - )=  c[( p 0 2 +  m2c2]'/2+ c[( p i )2+ rnZ2c2]l/2 - Mc 2 

Moreover, one can define an individual-particle representation, in which the 
system appears as two free classical "Wigner particles" (Bakamjian and 
Thomas, 1953). It is also possible to use this theory to describe particles in 
mutual interaction, but only for interaction fields which are localized in 
" the sense of Newton-Wigner." 

2.5. The Galilean Limit. The theory for the description of two classical 
Galilei relativistic particles can be obtained by (i) taking the limit c ~ oo, (ii) 
and then getting rid of redundant states. According to the first step, a 
system of two classical Galilei relativistic particles is a priori associated with 
(i) the state space 

~2oo =Foo •  = ((P~' ,Q~,p~,q~, t)  ~ R )  

(ii) the kinematical symmetry group SO(3) X R 7 being represented by the 
S 
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action 

(iii) the observables P~, 

(p0 ,  pi) 

( QO, Qi ) 

(pO, p i ) ~  

(qO, q i ) ~  

Q~, p~, q~, and t 

( e~ Mu') 
( QO + aO, A(Oi)}Qj+ tui+ a i) 

( q~ j) 

defined as in Definition 2.1. 
(Notice that AM - 0, x ~ is not defined, and X ~ = Qi in the Galilean limit.) 

A given model has a Galilean limit if 

li{n ~ (  P~, Q~, p", q~, t ) = P"P~ c--.~ 2M + h~176 

exists. For such a system the constraints a = 0 and fl = 0 imply that pO __ 0 
and pO = 0 in the Galilean limit. The observables QO and qO then become 
redundant and can be discarded. Thus, identifying two states differing only 
in the values taken by Q0 and qO, we can conclude the following: 

Definition. A system of two classical Galilei relativistic particles of 
masses m~ and m 2 is characterized by (i) the state space 

f~c = Fc • R = (( pi, Qi, pi, qi, t) ~ R 13) 

and the phase space 

(re, de, ^ dQi + dpi A dq i) 

(ii) the kinematical symmetry group SO(3) X •6 being represented by the 
si " " qi 

action given above; (iii) the observables P ,  Q', p', and t is being 
represented by functions on F G in the obvious way. 

The Galilean limit of the symplectomorphism (5) induces a symplecto- 
morphism F c ~ F o whose inverse is the usual "barycentric map." 

3. THE SYSTEM OF TWO QUANTAL PARTICLES 

In the present chapter we develop a theory for the description of two 
quantal Einstein relativistic particles in mutual interaction, in parallel with 
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the corresponding classical theory. From a general point of view the 
classical and quantum theories are different realizations of a set of imprimi- 
tivity systems defining the action of the restricted inhomogeneous Lorentz 
group on the observables, and the construction can be done by means of 
Mackey's theory of induced representations (Piron, 1976; Mackey, 1968). 
The existence and uniqueness of the construction are then assured by the 
imprimitivity theorem. 

3.1. Definition of the System 

Definition 3.1. The system of two quantal Einstein relativistic particles 
of kinematical masses m t and m 2 (m I >t m 2 >  0) and spins s I and s 2 
(sl, s 2 ~ (0, �89 1,3 ....  )) is by assumption associated with (i) the state space 
(H,I t ~ R) where each H, is a Hilbert space isomorphic to 

L2(N x R3,C 2s,+ I| C 2s'-+ l; d4pd4p) 

i.e., the Hilbert space of functions 

f :  N x R  3 --* C2St+l| 2":+1 

such that 

fN • 3(f  (P~'' pg)' f (  Pg' pg)) d4ed4p < O0 

(,) is the canonical Hermitian scalar product on C 2''+ l| 2s-'§ I; 
(ii) the kinematical symmetry group SO(3, 1) X ~4 being represented 

by the unitary projective representation s 

(U(A(Oi, ui),a~,)f)t(p~,p~)=exp(_ i_~p~a~ + _~p~vt,(i _ui)t)  

X D( A(  (pi( P~', A(  0/, u i ) ) ) )  ft ( A - ' (  Oi, ui)~p ~ + Mv'( - u i ) ,  

A-'(efl~(P",A(Oi, u')))~p ~) 

for 

A(ep~(P~,A(Oi, ui))=A-l(O~,(Pt~,A-l(Oi, ui)) (Definition 2.1) 

and 

D = D(")| (s') 
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the tensor product of two irreducible unitary projective representations of 
spins s I and s 2 of SO(3) on C 2~+1 and C2S'-+1; 

(iii) the observables P~, AM, X i describing the center of mass, the 
observations p~ and q~ describing the internal system, and the time t. These 
observables are by assumption represented by the self-adjoint operators 

( P . f ) , ( e . ,  p . )  = e~f,(e~, p . )  

p.> = (! [(.o +c (.,>q','- p.) 

(~:;:) ,(p. ,p.)=,h[o. ,+ *" 1 P' [ pO + Mc 

(P" f )  , (P",  p")  = pV,(P" ,  p")  

( ,~"f) , (e" ,  p")  = ihO.)t(e", p") 

( / f ) , (~ ' . ,  p, ')  = t f , (P. ,  p . )  

a.o- 2 (eO+Mc)= ft(e',p') 

In addition we can define observables S I and  Sj of internal spin and let 
them be represented by the generators S~ and S~ of/)ts'~ and b (s-'~. 

Remark. The observables Q0 and X ~ have no representatives in this 
quantum theory. This is a consequence of the well-known fact that the 
symmetric operator iO/Ox defined in L2((0, oo); dx) has no self-adjoint 
extensions. 

A representation which is useful for the discussion of models is defined 
by the unitary transformation 

F~" LZ(N • d4pd4p) 

' [ (P ' ) '+ (~M + M / ~ ' ]  '~ 

f(p", p") ~ g(AM, pi, pO, qi) 

=(-~)3fn3(focp-l)(AM, pi, p~)exP[h(piqi)]d3p (6) 
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being a composite of a Fourier transformation and the isometry induced by 
the diffeomorphism ~o: N x R  ~ N XR (I). In this representation the ob- 
servables P~, AM, X;, p~, and q~ are represented by 

( ~ _,g)( AM, pi, pO, qi) = ([( pi)2 +( AM-I- M)2c2] 1/2 

-Mc,  pi)g(AM, P',p~ i) 

( A~,lg)( AM, pi, pO, qi) = AMg( AM, P', pO, qi) 

1 pi 
(Xig)(AM'Pi'P~ 8e, 2 (pi)2+(AM+ M)2c2 

Xg(AM, Pi, po,qi) 

(p~'g)( AM, pi, pO, q,) = ( pO,_ ihSq,)g( AM, pi, pO, qi) 

( ?:l~'g)( AM, pi, pO, qi) = (_ ihSpo,qi)g( AM, pi, pO, qi) 

3.2. The Dynamics. The evolution of a quantal system is by assumption 
given by a family of unitary operators (Piron, 1976) 

E('c): Ht~  H,+~. 

induced by a permutation of the real line 

t ~ t + l "  
i.e., 

= + 

Under suitable technical conditions this is equivalent to the Schri3dinger 
equation 

ih off t = ~t f t  

where ~ ,  is a self-adjoint operator on H,, the Hamiltonian of the system. 
For a system of two quantal Einstein relativistic particles in mutual 

interaction the Hamiltonian is supposed to be of the form 

! s  + i  
2M 
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where the internal Hamiltonian/~ is given as a rotation invariant function of 
p~, 0 ~ and the spins only. 

Let a and/3 be defined by 

, =p0_lsc 

m \u/2 /~ 
/~ = k ~  ") ( l + 2 f z / M c 2 ) , / 2  

Evidently ~2, /~, &, and /) commute amongst each others, and we can 
consider the decomposition of ~ and/~ according to & and/) ,  i.e., 

9C(~162 
~sp(a,B) 

in 

sp(a,B) 

H = fsp(a,fl)H (a'#) dlz(a,  fl) 

By assumption, the total and internal energy spectra of the system are 
associated with the spectra of ~(o,o) and/~(o.o) in H (~176 We will express this 
by saying that the system satisfies the constraints 

" a =  0" and " f l = 0 "  (7) 

Remark.  The above definition of the energy spectra is slightly delicate 
in the sense that it is without meaning in a strict Hilbert-space language. In 

(o o) (o o) fact, the operators ti and/)  have purely continuous spectra and ~ ' ,/~ ' , 
and H ~~176 therefore do not exist. To overcome this difficulty one will have 
to consider a formulation in terms of rigged Hilbert-space (Gel'fand triple), 
i.e., work with generalized eigenfunctions. 

3.3. Characteristic Features of the Description. Because of the con- 
straints, the center of mass of the system in an internal bound state of 
energy e c~ and total angular momentumj  appears as a free Wigner particle 
of rest mass 

M'(  e (o)) = M + A M (  e (o)) = M ( 1 + 2 e (~ 
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and spin j; i.e., if the only degeneracy of the internal bound state spectrum 
of /~ is that due to rotation invariance, the center of mass is completely 
described by the carrier space of an irreducible unitary projective represen- 
tation (M'(e(~ j )  of S0(3, 1) X R 4, for each internal bound state (e (~ j) .  

$ 

Moreover, the asymptotic states of a scattering system is given by the tensor 
product of two one-particle spaces. This last statement can be proved for 
the case of no interaction, which is equivalent to the asymptotic scattering 
system. Thus, let the internal Hamiltonian be given by 

p~p. 
( [~f )( P~', p~') = --~---~m f (  p~' , p~') 

and let Hp denote the subspace of H on which 

m,[( pO + Mc) 2 _ (  pi)2]_2m2M[~ 

2M [(po + Me)2 - (p,)2] '/2 

> pO > _ rn2[ (P~ + Mc) 2_(Pi)2]_2m,M[t  

2 M [ ( P  ~ + Mc)2-(pi)Z]  '/2 

then, 

Hp = L2( M X M,C 2s'+l| d4pdap) 

We denote by 1;'~ the isometry induced by the diffeomorphism q,: 
M • M--, M x M (3), 

["q: L2( M x M,e2s,+l| d4pd4p) 

LZ(M • M, e2,,+,ee2,,-+,; d4ptd4p2) 

-- L2( M,e 2s'§ '; d4p,)| M,C 2,.,+, ; cl2p2) 

(f%f)(e", p") --- g(PL P~')= [4(P~', p~)]-,/2 

x L ( e . ) ) ) )  

| L(e~)) ) ) f  o , - ' ( p f ,  p~) 

where J• is the Jacobian determinant of ~. 
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The image of the representation U of S0(3, 1) X N 4 on Hp, is the form 
s 

~] ~ | ~]2, with 

x b"~ 

• g t (A- ' (O ' ,  ui'~'').p. + rn,,v~,( - ui)) 

being a projective unitary representation of S0(3, 1) X R 4 in 
$ 

L 2 ( m , c 2 ' . + l ;  d4p,,) 

For the spin-0 case, the proof of this assertion is straightforward (see 
classical case). To extend the proof to the case of nontrivial spins, we must 
show that 

A(0',u')))) 
X J~(sn'- ' (  A(q0iw( A - I (  0 i, ld i\l~ u ).p,, + rn.v"(- ui), 

L ( A - I ( O  i, i,~'n~, = u ) . r  + Mv~'(-ui))))) D('")(A(ep~(p.,A(Oi, ui)))) 

Since b "o) is a representation of SO(3), the computation can be done with 
the A(%,)s. Thus, introducing the definition of A(cpw(.)) and using a 
simplified notation, we find that 

A(eff.,(p,L(P)))A(epiw(P,A))A-'(epiw(A-tp, L - t (A- 'P) )  ) 

= A ) )  

•  

= A(9~i(p, L(P)))A(cpi(P, A)) 

X L - ' (  A-  ' (cp~ ( P,  A )) L -  '( P ) p ) L - ' (  A-'P )L(A- 'p )  

= A (q~( p, L ( P ) ) L - ' ( L - '  (P)p)A(q)~(  P. A ) ) L - ' ( A - ' P ) L - l p )  

= L - ' ( p ) L ( P ) L ( L - ' ( P ) p ) L - ' ( L - ' ( P ) p )  

• L - '  ( P ) A L  ( A - t P ) L - ' ( A - ' P ) L  ( A - ' p )  

= L - ' ( p ) A L ( A - ' p ) =  A ( ~ ( p ,  A))  
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In the above computation A- lp  stands for A-I(O i, ui)~'vp"+ mv~'( - U i )  

etc; moreover, we have applied the identity 

A ( S i ) A ( u i ) A - ' ( O ' )  = A(A(Si))u j) 

We have thus constructed the individual particle representation; in fact, 
the observables of four-momentum p.~, mass defect Am,, and position x.  of 
particle n, are represented by the self-adjoint operators 

o n  

( P.~g )( P~ ) = Pig ( P.~ ) 

c P" +mc) _(p i )2 ] ' / 2  ( A r h , , ~ g ) ( p : ) = {  1[(  0 2 

pi 1 (5%q,g)(p~)=ih Op.+ Opo 
pO + m,,c 

\ 
- m) g(p ) 

p~ 

2 (  o mnC) 2 p,, + 

L2(M,C2S.+I; d4p,,) 

Moreover, the Hamiltonian 9C reads in this representation 

for 

= ~,| + I2 |  

P.~P.. , 

(gC.g)(P:)=~-~m gtPf, ) 

while the constraints (7) implies the Lorentz-invariant constraints 

~ ~ ~ 0 ~ a I = 0 "  and ' a 2 

with 

l g  
d. = p O _  c " 

g(p ) 

Finally, if one introduces the constraints one obtain two free Wigner 
particles of (effective) masses rn I and rn 2 (i.e., Am = 0) and spins s I and s 2. 
Accordingly, modulo the (inessential) restriction to Hp we have shown that 
the description of a scattering of two particles in this formalism incorpo- 
rates the usual Einstein relativistic kinematical conservation laws. 
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Remark. As for the classical case, the restriction to Hp is inessential, 
because of the constraints. In fact, one may introduce the constraints first to 
construct the reduced phase space, and from them go to the individual 
particle representation. 

4. THE COULOMB SYSTEM 

The following model of the system of two electrically charged particles 
of spin 0 presents a simple but nontrivial application of the theory outlined 
above. The model is constructed according to the standard assumption that 
the particles interact via the Coulomb field. 

We determine the internal energy spectrum of the model and discuss 
some aspects of the description. In view of its approximate character, the 
model, considered as a model of hydrogenlike or exotic atoms, is acceptable 
from a phenomenological point of view. 

4.1. The Model. The internal Hamiltonian/~ describing the system of 
two particles of "spin 0" interacting via the Coulomb field is by assumption 
of the form 

/~ (/~i)2 {~O0--(ele2/c)[(Oi)2]-l/2}2+ ele2 

2m 2m [(dli)2]'/2 
(8) 

where m = mlmz / (m  I + m 2 ) ,  and e~ and e 2 denotes the charges of the two 
particles. 

The problem we will consider is to determine the internal energy 
spectrum associated with /~. For this it is sufficient to study the families 
/~(pO), ~(AM, pO), and /~(pO) appearing in the decomposition (6), i.e., 
/~(pO), &(AM, pO), and /~(pO) considered as operators on L2(R3, daq)= 
L2(R 3 \{0}, d3q) for each admissible value of AM, pO. 

Let o: R 3 \ ( 0 ) ~  R 3 \ (0) be the diffeomorphism defining the spherical 
coordinates (r, 0, q~). 0 induces the isometry 2 

Vo: L2(R3; d3q) --+ L2(R+• S2;sinOdrdOdep) 

--- L2(a + ; dr )| S2; sinO dO dep ) 

---~ L 2 ( ~  + , L2(  327, sinOdOdqJ); dr ) 

(Vof )( q', qZ, q3) = r ( f  o o - ' ) ( r ,  O, rk ) = q~ (r, O, qJ) 

2We consider only one chart. 
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Denoting by/~o_,(p0) the image of/~(pO) under f'o, we find that 

where 

[f1~176 [ - h2 + (li)2(O'q~)-(e'e2/c)22mr 2 

(p~ 
+ l+-~cc r 2rn 

(l'~b )(r, O, (p) = l'( O, ~ )t~(r, O, (p) 

are the angular momentum operators. 
Let /) be a unitary transformation defining a spectral representation of 

(i/) 2, i.e., 
oo 

0(i') E 
/ = 0  

o n  

/ = 0  

where /3 t denote the projection onto the spectral subspace 
momentum l, 

of angular 

Since/~o_ l(p0) is invariant under rotations and thus commutes with (ii) 2 it 
decomposes accordingly, 

oo 
~'/]~OII(pO) ~]- I  = E (]~OI') /(PO)/)/  

l = 0  

where each partial wave operator (/~o-,)/(p ~ is defined on L2(R 4, 
C2t+ I; dr) by 

h2 h2 l ( l+ l ) - ( e , e2 / c )  2 
((ho , ) t (p~ = -~-~mC92 + 2mr 2 

+ l+-mcc r 2m g / ( r )  

Similarly, we obtain (~o_ I)t(zXM, pO) and (l)o_ i)t(pO). 
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From Metz (1964) we can conclude that (i) (/~o-,)t(p ~ is self-adjoint if 

(t + 1/2) 2 - ( e , e 2 / h c )  2 >11 

(ii) for 

0 ~< ( l +  1/2) 2 -  ( e f f 2 / h c )  2 <~ 1 

there exists a class of self-adjoint extensions for (/zo_ t)/(p~ A regulariza- 
tion method selects the extension belonging to the boundary condition 

gt (r )  _ rl</+ 1/2) 2- (ele2/hc)211/2+ I/2 for r ~ 0 

(iii) for 

( l +  1/2) 2 - ( e l e 2 / h c )  2 < 0 

there exists a class of self-adjoint extensions of (/~a-')/(P~ but a regulari- 
zation method does not lead to a definite extension. 

In the following we assume that 

- 1/2 ~< e t e2 /hc  < 0 

Thus ([~o_l)t(p ~ (i) is self-adjoint for l>~1 and (ii) has a class of self- 
adjoint extensions for l = 0; we will consider the regular extension. Notice 
that these choices define a self-adjoint extension of h. 

The spectrum of (/~ o _ i ) l ( P ~  is then determined by the "eigenvalue 
equation" 

[( f l o - , ) , ( p ~ 1 7 6  (9) 

with the boundary condition 

is 

g , (O)  = o 

4.2. The Spectrum of the Internal Hamiltonian. The spectrum of h~(pO) 

1 (1 + p ~  2 p02 

2 [ / , §  

.... ele 2 
a = - -  ; n = 1 , 2 , . . . ;  =0 ,1  U -- ~---, oo 
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for pO > _ mc, and 
p02 00 / 

- T-ram' 
for pO < _ inc. 

To prove this  statement we will consider separately the discrete and 
continuous spectra. 

( i) The Discrete Spectrum. Let us pose 

y =  [(l + 1/2)2--0t2] I /2-  1/2 

g2 = _ 4  p~ +2me(p ~ > 0 
h 2 

X = 2mc~ ( pO ) 
~h ~l+--mc ' 

p = g r  

g > O  

Then, (9) can be written 

02 ( l +  1/2) 2 -  1/4 

0 2 
+ -- _ x l] 

p g ( o )  = o 

g(p)~L2(R+,do)  and g ( 0 ) = 0  (10) 

The equation (10) is the Whittaker equation, and the solutions to the above 
problem can be expressed in terms of confluent hypergeometric functions 
M, i.e., 

gvx(O) = e -  ~ 'M(y  + 1 - X,2"y +2 ,  O) 

(13.1.31, 13.1.32, Abramowitz and Stegun, 1966). The condition g ~  
L2(R a, dr) implies that 

Thus, 

7 + l - X = - r = 0 , 1 , 2  . . . .  

1 (1 + p~ p02 

e"t(P~ = - 2  ( n _ l _ l / 2 + [ ( l + l / 2 ) 2 _ a 2 ] , / 2 ) 2  2m 

with n = v + 1 + 1, expresses the discrete spectrum of/~~ 
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( ii) The Continuous Spectrum. Let us pose 

k 2 = pO2 +2me(pO) > 0 

mca [ pO I 
K=T~l+--mc]' k>O 
p = , , r  (ll) 

Then, (9) can be written 

[002 (y + 1 ) 2 -  1/4 x 1] 
d + ~ + 4  g ( ~ 1 7 6  

g(0) = 0 

Accordingly by posing p = T- iz we again obtain the Whittaker equation. 
Thus the solutions are of the form 

g(p)  = e+-ipl2p'~+iM(y + IT-ix,2y +2, T-ip) 

and according to (11) 

k 2 -  p~ [ P ~ ) 
e(P~ 2m ~ - 2"--m '~176 

4.3. The Internal Energy Speetnun. From the preceding results we can 
conclude that H = HD| c, where 

- M t -(m2/M)(AM + M)cn=I / = 0  

cd 3p ) 
[ (p , )2+ (AM + M/2c2] lj2 dAM 

Hc=S-DL2( R3'S<n:/M)(MA~I?~ccL2([(- 2/ )( ) \l_-~'~176176 )~_] C2t+i;,,=o de) 

cd 3p ) 
[(P')2+( AM+ M)2c2] 'i2 dAM 

alp~ 
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with 

ifp ~ > - mc 

ifp ~ < - mc 

Aaberge 

defines a representation diagonalizing/~ and (/~) 2. 
The complementary subspaces H o and H o i.e., the subspaces of the 

discrete and continuous spectrum of h, have the following canonical repre- 
sentations also: 

H o =- L 2 
n - I  

N, ~ C2t+l; 
n = l  / = 0  

dAMc d3pXpo > _ ,,,.( pO ) dpO 

[ ( e ' / +  (~M + M/c2] 'p- 

-~L 2 N, E C2'+';d3PXp~176 ~ (12) 
n = l  1=0  

and 

nc-_f ~ L2(-3 r~.,,/M),~M+M)c __(_+ ) , I  t . - |~  , ~ C2t+~;dk dp~ 
" -  M \ " - ( m 2 / M ) ( A M  + M)c  ~ 1 = 0  

cd 3p ) 
( ( e ' / +  ( ~ M +  M / c 2 )  '~ d * U  

_ L2(R3, f r L2(RS;d3k)@O; 
- M ~ - ( m 2 / M ) ( ~ M  + M ) c  

cd 3p 

[ ( e ' / +  (aM + ~,/=c~] '~ 
dAM 

= L2(N XR3; d4Pdp~ 

with N as in Definition 2.1. Denote by/~D and/~c the images of/~ under the 
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projections onto H D and H o respectively; then, 

( r 'DI" )~ p0) = 
1 (1 + p~ 2 

2 { n - l - � 8 9  

p02 

2m 

( fTcfC)( p,  ' pO k') 

x/,g(J,~, p~ 

(k~)2 _ pO2 
2m fC(p"P~  

Moreover, the representation 0 of SO(1,3)0 X R 4 (Definition 3.1) 
induces the representations ." 

((]D(A(Oi, ui),a~)fD)tn#(p~,pO)=exp(_ i_~p,a~ +-~P, vU _ui)t)  

x D'"(A(<(,,-, a(o ' , , , ' ) ) )  

x D u~)~e,  + S,.,(A-'(O', Mv'( - ui)) 
and 

( 0+( A(o', u'), a")i <) ,( s'", pO k') 

p~ a- i (  ~pi,,( P", A-i( ei, u')) );kJ ) 

in H D and H o respectively./~{t) is an irreducible unitary representation of 
SO(3) in C 2l+ i 

The Discrete Internal Energy Spectrum. In the representation (12) 
diagonaliziag A33/D, rio, and /~D, dD and tip are represented by 

(aog~),,,(au, pO)= { au  + au~ 2 ~ -  e,,,( pO)} g,,D(AM, pO) 

[l + 2e,a(p~ '/2 

• p~ 
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with 

1 (l + p~ 2 
e " t ( P ~  (n_l_�89189 

According to our definition, the internal energy spectrum of the sys- 
tem is 

(0) e, t (pO)=e,,t(pO(fl))l/~=o 

Thus, consider first the case where m~ ---, oo, i.e., the system of a particle of 
mass m in an external Coulomb field. Then, 

fi.z(pO) pO 1 e 
= - c " / ( P ~  

and accordingly, we obtain the well-known expression 

et~ tv+[(l+�89 2 a2]-'/2) -'/2) nl - -  - -  mc2 

l a  2 1 a 4 ( 3  n ) 
2 n2 rnc2 + 2 -~ 4 l + �89 mc2 

which also gives the energy levels predicted by the Klein-Gordon equation 
with the Coulomb potential (Shift, 1955). In the general case, we get to the 
order a 4 

l a 2 1 a4[ (  m\  1/2 1 ( - 4 - ~ ) - ~ _ ] m c  2 e~ ~ --~ n---~mc2 +-~-~ 1 - 4 - ~ )  - 1 m _ n 

The eigenfunctions of /~(o,o) are functions of the form f ( P ~ ) x ~ .  / 
(r, d~,O) in 

. = ,  , = 0  ' [ ( P ' ) 2 + ( a M  + i) c2] ' '  

with 

g . , ( r , 8 , ~ )  = [~(p~176 

1 
x 7 g  . _ ,,t,,+ ,/2)2_ ~  [/~( pO(B)) r ]  Y ' (  8, q~)[a=o 
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Thus it follows that when the system is in a bound state of internal 
energy ~./~(~ the center of mass appears as a free particle of spin l and 
effective mass M ' =  m(1 + 2e~~ 1/2. 

The Continuous Internal Energy Spectrum. The spectrum of h~ '~ is 
given by 

e~~ = e( p~ fl ) )l~= o 

~ -  2-----~ + mc2 1 + 2 - - - - + - -  --1 
mmc 2 2m M2c4[ 2m ] J  

Thus for the total energy m the center-of-mass frame of reference we get 

= m,c  + m 2 c , - ] , p  _ 

On the other hand, following the discussion of Section 3.4, one shows 
that the asymptotic scattering system is equivalent to the system of two free 
particles. 

5. DISCUSSION 

There are no essential formal difficulties involved in the construction of 
this theory. It is in every respect mathematically well defined, and moreover, 
satisfies a number of a priori conditions which, having been suggested by 
the Galilean theory, seem to be natural to impose in the Einstein relativistic 
framework also. The most notable of these conditions is the universality of 
the definition of a particle. In fact, it seems that this condition, together 
with the assumptions that the theory should incorporate the usual Einstein 
relativistic kinematics and the property of relative localization in space-time, 
fixes the structure of the theory. 

It is clear that a general theory like the present one can not be directly 
falsified; it contains sufficiently phenomenological input to describe in a 
proper way the kinematical behaviour of a system of Einstein relativistic 
particles, and thus, any disagreement between the predictions of a given 
model formulated in this theory and experience can be referred to the 
particular model being considered. In fact, a theory like this can only be 
judged on the basis of criteria of usefulness and applicability, i.e., according 
to whether it can be used to formulate workable models of physical systems 
exhibiting features which one would characterize as being Einstein relativis- 
tic. It is with such a judgement in mind that we have considered the system 
of two gravitating classical particles (Aaberge, 1979), and the system of two 
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charged quantal particles of spin 0, the results obtained being such as to 
give a partial justification of the theory. None of these models describe 
systems which are properly speaking Einstein relativistic. In fact, the 
Einstein relativistic effects are far from dominating. They introduce only 
small refinements to the Galilean models. There exists however, a simple 
model of hadronic scattering (Schrempp and Schrempp, 1980) which can be 
considered as an example of potential scattering in our theory. This model 
does work surprisingly well also in the high-energy domain, thus supporting 
an extension of the applicability of our theory to this domain also. 

A priori, possible applications of this theory would be to the descrip- 
tion of hydrogenlike systems, exotic atoms and meson systems via the quark 
model. In particular, the nonrelativistic models of the T/q, mesons (Quigg 
and Rosner, 1979; Grosse and Martin, 1980) can directly be taken over in 
the present theory, since m~ = m  2 and / 3 = 0 ~ p ~  means that the 
relativistic internal Hamiltonian equals the nonrelativistic one. 
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